
Experiences Switching an Archiving Web Crawler to Support HTTP/2
Sebastian Nagel

About HTTP/2
HTTP/2 was introduced in 2015 as the second major ver-
sion of the Hypertext Transfer Protocol. HTTP/2 addresses
several issues with HTTP/1.1 and focuses on performance,
specifically low latency when loading a web page in web
browsers andefficient useof network and server resources.
The current standard is defined by RFC9113 [1] which obso-
letes earlier versions [2, 3].

HTTP 1.x – Overview and Limitations

In HTTP/0.9 (1991) a single request line GET/index.html
is sent by the client over TCP and the server sends the file
content back.
HTTP/1.0 (1996) adds name-value headers to transfer
metadata in requests and responses. Compressed transfer
of content is supported.
HTTP/1.1 (1997) introduces several improvements: the
reuse of TCP connections (keep-alive), virtual hosting
(Host request header) and chunked Transfer-Encoding.
HTTP/1.1 is a simple protocol but has twomajor limitations:
First, it is a synchronous protocol. The TCP connection
is blocked after the request is sent until the response is
returned and processed. TCP connections are resource-
intensive, esp. if HTTPS is used. Although softened by
keep-alive connections in HTTP/1.1, still only a single re-
source can be transferred at time.
Second, it is a text-based protocol and although the bulk of
the payload is binary, even text-based formats (HTML, CSS,
Javascript) are compressed into a binary format for transfer.
“So, the web had basically moved on from text-based trans-
port a long time ago, but HTTP had not.” [5]

HTTP/2 – Technical Outline

HTTP/2 continues to use the same building blocks as
HTTP/1.1 – methods, status codes, header fields, and URIs.
But the transport layer between client and server comes
with several improvements:
Messages are wrapped into binary frames which are more
efficient to parse because no scan for newline characters
is required. Frames of different streams (request-response
pairs) can be sent on the same TCP connection without in-
terfering which each other. This enables connection mul-
tiplexing, even with stream prioritization, and flow control
(transfer rate of a stream).
HTTP headers can reach a size of few kilobytes if HTTP
cookies are transferred. The HPACK format [8] defines
header compression based on the following principles:

- Client and server need to store and update a table of
header fields seen over multiple requests. If the value of
a header is the same between request, the header is only
referenced.

- Commonly used headers are predefined in a static table.
- Header names and values, not yet seen, are compressed
using a static Hufmann coding.

Theoptional “HTTP/2ServerPush” [9] allowsservers topre-
emptively send resources to the client. In practice, is has ap-
peared to waste network bandwidth because servers can-
not know which resources are stored in the client’s cache.
Resource hints (e.g., <linkrel=preload>) and “HTTP 103
Early Hints” [10] have found wider adoption as mechanism
for resource preemption and major web browsers stopped
supporting “Server Push”.

TLS Encryption

TheHTTP/2standarddefines requestsoverbothencrypted
(https://) and unencrypted (http://) connections. How-
ever, almost all HTTP/2 client implementations only sup-
port the encrypted variant – abbreviated as “h2”. The un-
encrypted variant “h2c” is rarely used.

Outlook – HTTP/3

HTTP/3, was published in 2022. HTTP/3 is based on the
sameprinciplesasHTTP/2, butusesQUICandUDPas trans-
port layer improving the performance over TCP.

About Common Crawl
Common Crawl is a non-profit organization which regularly crawls a
significant sample of the web andmakes the data accessible free of
charge to everyone interested in running machine-scale analysis on
web data.

At present, we crawl every month up to 3.0 billion web pages. The
data is hosted in the Amazon cloud as part of the AWS Open Data
program.

Contact: https://commoncrawl.org/
sebastian@commoncrawl.org

Make a Web Crawler Speak HTTP/2
Looking at the technical complexity of HTTP/2, there was
no doubt that a custom implementation of the protocol is
out of scope.
Common Crawl uses a Java crawler, Apache Nutch [11], for
crawling and web archiving. Nutch is equipped with three
pluggable implementations of the HTTP protocol layer:

- A custom implementation of HTTP/1.1 based on Java
sockets

- Using the Apache HTTP Client [12], focused on crawling
content behind authentication and forms

- Relying on the Square’s OkHttp library [13] supporting
Brotli content encoding, providing a configurable connec-
tion pool and interceptors to recordHTTP headers and IP
addresses. OkHttp already speaks HTTP/2, and support
for HTTP/2 can be switched on or off per configuration.

The OkHttp protocol plugin was and is used by our crawler
because the interceptor architecturemakes it themost suit-
able for web archiving. Adding support for HTTP/2 could
be implemented by a configuration change; only theWARC
writer requiredminor modifications.

HTTP/2 Captures in WARC Files

HTTP/2 Requests and Responses in WARC Files

The WARC specification requires that HTTP response
records “should contain the full HTTP response received
over the network, including headers, i.e. it contains the ‘re-
sponse’ message defined by section 6 of HTTP/1.1 ([RFC
2616]), or by any previous or subsequent version of HTTP
compatible with section 6 of HTTP/1.1 ([RFC 2616]).” ([14],
section “6.3.2 ‘http’ and ‘https’ schemes”).
By now, there is no specification how to archive HTTP/2 or
HTTP/3 traffic [16]. The only way to store HTTP/2 requests
and responses is to rely on a compatible HTTP/1.1 represen-
tation, while the original HTTP protocol version is stored as
WARC header metadata. The WARC-Protocol header is
proposed in [17] and was implemented in our web crawler
by [19, 20].

Example HTTP/2 WARC Capture
WARC/1.0
WARC-Type: request
WARC-Date: 2025-02-17T13:30:42Z
...
WARC-Target-URI: https://en.wikipedia.org/wiki/Saturn
WARC-Protocol: h2
WARC-Protocol: tls/1.3
WARC-Cipher-Suite: TLS_AES_128_GCM_SHA256

GET /wiki/Saturn HTTP/1.1
User-Agent: CCBot/2.0 (https://commoncrawl.org/faq/)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: br,gzip
Host: en.wikipedia.org
Connection: Keep-Alive

WARC/1.0
WARC-Type: response
WARC-Date: 2025-02-17T13:30:42Z
...
WARC-Target-URI: https://en.wikipedia.org/wiki/Saturn
WARC-Protocol: h2
WARC-Protocol: tls/1.3
WARC-Cipher-Suite: TLS_AES_128_GCM_SHA256
...

HTTP/1.1 200
date: Sun, 16 Feb 2025 22:21:15 GMT
...

<!DOCTYPE html>
...
<title>Saturn - Wikipedia</title>
...

WARC Reader Backward-Compatibility

HTTP/2 does not define a “reason phrase”; e.g., in HTTP/1.1
it would be “Ok” for the status code 200. We decided not to
include an artificial reason phrase. However, a white space
is added after the status code to ensure thatWARC readers
can split the status line into three parts at space characters:

HTTP/1.1⊔200⊔\r\n

In 2020, HTTP/2 was accidentally enabled [21]. Tests run in
the aftermath showed that many WARC readers complain
or fail on a HTTP status line with an unknownHTTP version
number:

GET /index.html HTTP/2

The WARC-Procotol field was the only option in order not
to break downstream user code. As shown in the exam-
ple, we decided to repeat the WARC-Procotol header to
encode both the HTTP and TLS version. Of course, this re-
quires that downstream tools reading the WARC files are
able to deal with the repeated headers. TheWARC-to-WAT
converter requiredafix [22]whichalsowasnecessary for re-
peated HTTP headers, e.g., Set-Cookie. Further specifica-
tion regarding repeated headers is recommended, cf. [23].

Experiences Crawling With HTTP/2
Support for HTTP/2 was enabled during a running crawl.
This allowed us to measure the performance of crawling
with or without support for HTTP/2 in an identical setup at
almost the same time.
The page fetching in a typical CCF main crawl is split over
100 segments, each segment is fetched in a separate
Hadoop Map-Reduce job running for 3 hours. Fetcher job
performance was measured over five jobs each before and
after HTTP/2 was enabled.

Share of HTTP Versions

Not unexpected, HTTP/2 is the dominant HTTP protocol
version, andmore than 70%of theweb pageswere fetched
over HTTP/2.

HTTP/2 HTTP Version Captures %
disabled http/1.0 49759 0.04

http/1.1 128788781 99.96
enabled http/1.0 40759 0.03

http/1.1 35427285 27.58
h2 92977534 72.39

A similar adoption rate is reported in theWebAlmanac [24]:
22% – HTTP/1.1, 71% – HTTP/2 and 7% – HTTP/3.

CPU Usage

There is a 2.5% reduction in CPU time spent for the entire
fetcher job.

disabled enabled
HTTP/2

94

95

96

97

98

99

100

Fe
tc

he
r j

ob
 to

ta
l C

PU
 h

ou
rs

 97.49h

 94.97h

Figure1.CPUtimespent in thefive fetcher jobsbeforeandafterHTTP/2
was enabled. Error bar: mean and standard deviation.

Profiler snapshots show that by far more time is spent for
routines not affected by the switch to HTTP/2, that is TLS
handshakes, robots.txt parsing, MIME type identification,
WARC digests and compression. Most CPU time is saved
when reading or writing HTTP headers.

Page Fetch Time

The average time spent to fetch a web page is slightly re-
duced with HTTP/2 enabled – from 1038 to 1020 millisec-
onds. A speed up is also visible for the most common com-
bination of HTTP/2 and TLS 1.3 in comparison to HTTP/1.1
and TLS 1.3.

HTTP/2 HTTP TLS Captures Capt % Avg Fetchtimems

disabled * * 128841301 100.00 1038.29
http/1.0 - 15 166 0.01 1011.45

tls/1.2 13 122 0.01 1168.32
tls/1.3 21471 0.02 1708.62

http/1.1 - 14681800 11.40 900.04
tls/1.2 20781482 16.13 1155.79
tls/1.3 93328260 72.44 1033.71

enabled * * 128445578 100.00 1020.31
http/1.0 - 15892 0.01 1464.92

tls/1.2 12070 0.01 847.56
tls/1.3 12797 0.01 1846.70

http/1.1 - 14590516 11.36 913.69
tls/1.2 9425891 7.34 1186.34
tls/1.3 11410878 8.88 1169.11

h2 tls/1.2 11 327309 8.82 1113.72
tls/1.3 81650225 63.57 986.26

IIPC Web Archiving Conference 2025, 8 – 10 April 2025, Oslo, Norway

https://aws.amazon.com/opendata/
https://commoncrawl.org/

Experiences Switching an Archiving Web Crawler to Support HTTP/2
Sebastian Nagel

References

[1] Martin Thomson and Cory Benfield. HTTP/2. RFC 9113. June 2022. 10.17487/RFC9113. https://www.rfc-editor.org/info/rfc9113.
[2] Mike Belshe, Roberto Peon, andMartin Thomson. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540. May 2015. 10.17487/RFC7540. https://www.rfc-editor.org/info/rfc7540.
[3] David Benjamin. Using TLS 1.3 with HTTP/2. RFC 8740. Feb. 2020. 10.17487/RFC8740. https://www.rfc-editor.org/info/rfc8740.
[4] Roy T. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2068. Jan. 1997. 10.17487/RFC2068. https://www.rfc-editor.org/info/rfc2068.
[5] Barry Pollard et al. “HTTP/2”. In: The 2019Web Almanac. HTTP Archive, 2019. Chap. 20. https://almanac.httparchive.org/en/2019/http.
[6] Wikipedia contributors. HTTP—Wikipedia, The Free Encyclopedia. 2024. https://en.wikipedia.org/w/index.php?title=HTTP&oldid=1262579277.
[7] Wikipedia contributors. HTTP/2 —Wikipedia, The Free Encyclopedia. 2025. https://en.wikipedia.org/w/index.php?title=HTTP/2&oldid=1278233300.
[8] Roberto Peon and Herve Ruellan. HPACK: Header Compression for HTTP/2. RFC 7541. May 2015. 10.17487/RFC7541. https://www.rfc-editor.org/info/rfc7541.
[9] Wikipedia contributors. HTTP/2 Server Push—Wikipedia, The Free Encyclopedia. 2024. https://en.wikipedia.org/w/index.php?title=HTTP/2_Server_Push&oldid=1254202868.
[10] Kazuho Oku. An HTTP Status Code for Indicating Hints. RFC 8297. Dec. 2017. 10.17487/RFC8297. https://www.rfc-editor.org/info/rfc8297.
[11] Apache Nutch. https://nutch.apache.org/.
[12] Apache HttpClient. https://hc.apache.org/httpcomponents-client-4.5.x/index.html.
[13] OkHttp. https://square.github.io/okhttp/.
[14] TheWARC Format 1.1. https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/.
[15] Henrik Nielsen et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. June 1999. 10.17487/RFC2616. https://www.rfc-editor.org/info/rfc2616.
[16] WARC revision 1.1 (modification): support of HTTP 2.X protocol inWARC format. - Issue #15 - iipc/warc-specifications. https://github.com/iipc/warc-specifications/issues/15.
[17] WARC-Protocol field proposal - Issue #42 - iipc/warc-specifications. https://github.com/iipc/warc-specifications/issues/42.
[18] WARC-Cipher-Suite field proposal - Issue #86 - iipc/warc-specifications. https://github.com/iipc/warc-specifications/issues/86.
[19] NUTCH-3062 protocol-okhttp: optionally record HTTP and SSL/TLS versions. https://issues.apache.org/jira/browse/NUTCH-3062.
[20] WARCwriter support HTTP/2 · Issue #29 · commoncrawl/nutch. https://github.com/commoncrawl/nutch/issues/29.
[21] Do not use ”http/2” protocol version in HTTP headers inWARC files. https://github.com/commoncrawl/news-crawl/issues/42.
[22] MakeMetaData multi-valued to preserve values of repeatingWARC and HTTP headers - Pull Request #98 - iipc/webarchive-commons.

https://github.com/iipc/webarchive-commons/pull/98.
[23] Multiple extension-fields of the same type on the same record? - Issue #95 - iipc/warc-specifications. https://github.com/iipc/warc-specifications/issues/95.
[24] Robin Marx, Barry Pollard, and Chris Böttger. “HTTP”. In: The 2024Web Almanac. HTTP Archive, 2024. Chap. 18. 10.5281/zenodo.14065825.

https://almanac.httparchive.org/en/2024/http.
[25] Joe Viggiano et al. “CDN”. In: The 2024Web Almanac. HTTP Archive, 2024. Chap. 17. 10.5281/zenodo.14065633. https://almanac.httparchive.org/en/2024/cdn.
[26] Vaspol Ruamviboonsuk et al. “HTTP”. In: The 2022Web Almanac. HTTP Archive, 2022. Chap. 23. https://almanac.httparchive.org/en/2022/http.
[27] Dominic Lovell et al. “HTTP”. In: The 2021Web Almanac. HTTP Archive, 2021. Chap. 24. https://almanac.httparchive.org/en/2021/http.
[28] Andrew Galloni et al. “HTTP/2”. In: The 2020Web Almanac. HTTP Archive, 2020. Chap. 22. https://almanac.httparchive.org/en/2020/http.

10.17487/RFC9113
https://www.rfc-editor.org/info/rfc9113
10.17487/RFC7540
https://www.rfc-editor.org/info/rfc7540
10.17487/RFC8740
https://www.rfc-editor.org/info/rfc8740
10.17487/RFC2068
https://www.rfc-editor.org/info/rfc2068
https://almanac.httparchive.org/en/2019/http
https://en.wikipedia.org/w/index.php?title=HTTP&oldid=1262579277
https://en.wikipedia.org/w/index.php?title=HTTP/2&oldid=1278233300
10.17487/RFC7541
https://www.rfc-editor.org/info/rfc7541
https://en.wikipedia.org/w/index.php?title=HTTP/2_Server_Push&oldid=1254202868
10.17487/RFC8297
https://www.rfc-editor.org/info/rfc8297
https://nutch.apache.org/
https://hc.apache.org/httpcomponents-client-4.5.x/index.html
https://square.github.io/okhttp/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
10.17487/RFC2616
https://www.rfc-editor.org/info/rfc2616
https://github.com/iipc/warc-specifications/issues/15
https://github.com/iipc/warc-specifications/issues/42
https://github.com/iipc/warc-specifications/issues/86
https://issues.apache.org/jira/browse/NUTCH-3062
https://github.com/commoncrawl/nutch/issues/29
https://github.com/commoncrawl/news-crawl/issues/42
https://github.com/iipc/webarchive-commons/pull/98
https://github.com/iipc/warc-specifications/issues/95
10.5281/zenodo.14065825
https://almanac.httparchive.org/en/2024/http
10.5281/zenodo.14065633
https://almanac.httparchive.org/en/2024/cdn
https://almanac.httparchive.org/en/2022/http
https://almanac.httparchive.org/en/2021/http
https://almanac.httparchive.org/en/2020/http

	References

